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wﬂjldifferENE scaled models under different stress fields. In this paper, this
e rechnique will be employed to examine the HGS scaling laws for testing

ycS has been successfully applied in some model testings (Yan and Byrne
1989, 1990, 1991) . Herein, a model study of seismic response of single piles to
che <imulated earthquake loading is presented to illustrate the application of

rechnique g aynamic testing. Test program consists of £ree - and fForced

spration tests of single piles in dense sand.
"\l'r

TEST SET-UP AND PROCEDURES

A test device using HGS testing principle has been developed at the
gniversity of British Columbia. A schematic of the device is shown in Fig.l.
Detailed description of HGS device is given by Yan (1990).

During a test, water is continuously pumped to the sand surrace. The given
hwdraulic gradient is obtained by controlling the air pressure in air chamber and
d;aining the water to a low pressure at the base. Thus, pore water pressure 1in
rhe soil decreases with depth, giving escalated effective stresses that increase
linearly with depth. This test device 1s mounted on the normal shaking table, and
the model tests performed as usual shaking table tests.

The soil deposit is formed of uniform fine Ottawa sand using the 'quick
sand” sample preparation technique (Yan and Byrne 1989). The sand deposit 1is
323.6 mm in height, and 404x190 mm in plan with the larger dimension in the
shaking direction. No soft material is used at soil container walls to simulate
the free field condition as it is found that the "soft” boundary 1s not
sufficient to simulate the simple shear mode of soil motion, rather 1t introduces
active soil failures at the boundaries when the stress in the soil 1s increased
by the hydraulic gradient, thus violating zero strain boundary conditions before
earthquake loading. The effect of rigid boundary will be discussed later in light

O experimental data.

_ Three model piles made of 6.35, g 53 12 .7 mmn Q.0 alum; tubing were used
In the test program. The 6.35 mm O.D. pile 1is instrumented with 8 pairs oF Foil

LYPe strain gauges along its length to measure the bending moments. Brass mMasSSeES

of different we ights are clamped at the pile head to simulate different structure
Masses .

In the free vibration tests, after a given soll Stress condition 1s
©Stablished, the pile is pushed to a given displacement at the pile head, and
then released quickly to 'undergo free wvibration. Pile head acceleration and
latera] displacement are measured respectively by a miniature accelerometez': at
the mass centre and two LVDTs. For the forced vibration tests, a sinusoidal
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Tt can be seen that for both input base accelerations a similar small
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3mmﬂﬂiot amplification occurs between the base and sand surface. HO hi
. wever, this

. pot the ~ase for pile head acceleration.

when the pi}e :e« vibrated under a base input frequency significantl 1e8s
+han its natural frequency, only a small amount of amplification from freeyfield
ro pile head occurs. On +he other hand, when the pile is vibrated under a base
iﬂpn;frequency'close to its natural frequency, significant amplification occurs
.t the pile head acceleration. At this resonant condition, the acceleration at
rhe pile head is about 3 times higher than that in free field.

such a high pile head acceleration produces a significant increase in the
pile bending moment. Fig.6 shows a comparison of pile bending moment
;ﬁﬁtributions'between resonant and non resonant conditions. This bending moment
distribution 1is very <imilar to that observed from centrifuge test (Finn and Gohl
1987). The maximum bending moment occurs at a depth of 3.5 pile diameter below

It is seen from this figure +hat the maximum bending moment for the

+rhe surface.
t for the non resonant

~ear resonant condition is about 4 times higher than tha
Thus. it is important 1n the design to avoid resonant condition, and

conditiomn.
ping and ductility to control the amplification and prevent

provide enough dam
pile bending damage should resonance OcCCur.

SUMMARY AND CONCLUSION

In this paper, a Newv method of performing seismic shake table tests at a

field stress condition 1s presented. The unique feature of this method 1s the use
of the hydraulic gradient tO increase the Stress jevel in the models. Scaling

laws implied in dynamic HGS tests have been evaluated and found to be satisfied.
‘bration tests have been presented to

nd damping with the

and different pile response at resonant

has been clearly Jemonstrated., From these test
able 1n combination with HGS
f seismic nodel testing at
hich the

and non resonant conditions
I - : :
esults it is shown that a eenventlonal shake t€

Ce i . 4 : ‘
1jfhnlque can provide a simple and inexpensive way ©
e field stress condition. Such tests can enrich our data base from W

analytical methods can be checked.
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